
Apple Performance Tools
Session 905

Apple Performance Tools

Robert Bowdidge
Developer Tools Group, Apple Computer

Why Worry About Performance?
•Performance is a selling point
•Performance problems are (mostly) invisible
•You cannot worry about only your application

• Users will run multiple applications
• Does your application play well with others?

•How do you find performance problems in
your application?

What Will You Learn Today?
•Apple has tools to help

• Tools can measure, identify possible causes
• You will see quick examples of tool use
• Developer CD tools
• Processor performance tools

•See framework talks for specific, concrete advice
•Explore tool use on your own

Causes of Poor Performance
•Excessive use of memory
•Executing too much code
•Waiting for other processes or devices

• Excessive disk accesses
• Excessive drawing or redrawing

•Most problems cause excessive memory use
•Most memory use problems cause swapping

Memory Use

What Tools Exist?
Execution

Behavior Resource Use

Monitor top

heap

vmmap

top

Thread Viewer

fs_usage

sc_usage

QuartzDebug

Analyze MallocDebug

ObjectAlloc

Sampler

Shikari

MONster

Sampler

OpenGL Profiler

Example Program: SimPhysics
•Realistic example, with real inefficiencies

•Originally for Java, quickly ported to Cocoa

•Visualizes electrical fields between particles

Finding Performance Problems
•How do we notice performance problems?

• Measurements!
• Egregious problems
• Expectations about complexity, resource use
• Comparison with past performance

•First step: run top command line tool
• Provides details about system state
• CPU, memory usage of tasks, paging rate
• Watch other relevant processes (Window Server)

•Most relevant: CPU usage, swapping, RPRVT

Check Memory Use Over Time
•How can you identify trends in memory use?

• Call top repeatedly, save results to file
•Command-line scripts can be your friend:

• Permit customized data collection
• Run remotely, run without affecting system
• Run even when window server will not respond

Causes of Excessive Memory Use
•Too much memory allocated

• Large structures scattered across memory
• Unneeded caching of data in memory
• Leaking unneeded memory

•Excessive memory use leads to disk accesses

Finding Causes of Memory Use
•MallocDebug: track source of current allocations

• Relates allocations to call graphs
• Allocations since marked point
• Leak detection
• Pointer problems

•ObjectAlloc: how many objects exist?
• Shows number of objects of each class
• Shows changes over time

MallocDebug:
Where Is Memory Allocated?
•Shows all allocations, grouped by allocation site

• Browse call graph to find uses at site
• Examine contents of memory
• Identify calls responsible for large allocations

•Only shows currently allocated objects

MallocDebug:
Are We Leaking Any Memory?
•What memory are we allocating, then forgetting?

• Leaks waste memory, fatal for long-running
applications

• Force scattering of memory that is used
•MallocDebug can detect unreferenced blocks

• Searches all memory for pointers to blocks
• Unreferenced blocks must be leaked
• Only root of leaked structure shown!

MallocDebug:
Finding Pointer Bugs
•Some memory bugs can be subtle, intermittent

• Referencing freed memory causes
values to change

• Overrunning/underrunning buffers
trash memory

•MallocDebug “helps” detect such problems
• Encourages badly behaved program to crash
• Overwrites freed memory, adds guard words
• Assorted other warning messages to console

ObjectAlloc:
Analyzing Object Use
•ObjectAlloc shows how many objects exist

• Current, max, total created over life of program
• Shows totals, bar graph, backtraces

•Great for summary, noting trends
• Did you expect 100 FooBars?

•Works for CoreFoundation, ObjC objects
• Backtraces for Objective-C retains and releases
• Also shows malloc blocks

CPU Usage:
What Are The Problems?
•Cause of excessive CPU time

• Executing unnecessary code
• Expensive algorithm
• Unexpected calls to expensive code
• Checking for events by polling, not blocking

•General approach: find most costly routines
• Improvements will make largest difference

Sampler:
Where Are the Hot Spots?
•To improve speed, you need to find costly calls
•Sampler finds what code is executing

• Stops program at interval, records call stack
• Shows only functions seen at sampling time
• Presents call graph with sample counts

•If you need better detail, check out gprof

Causes of Poor Resource Use
•Inappropriate disk accesses

• Who says files have to be on local machine?
•Multiple processes may divide work

• Drawing partially done by window server
• Waiting for responses

Are We Using the Disk Badly?
•What’s happening at startup to keep us slow?
•Maybe we are doing too many disk accesses

• Accesses at wrong time gives slow appearance
•Use fs_usage to watch disk operations

• Must be run as root or with sudo
•Use Sampler to see where we called routines

Are We Drawing Too Much?
•Drawing directly affects performance

• Drawing consumes CPU time, memory
• Idle windows consume memory
• Drawing eventually done by window server

•Use QuartzDebug to understand drawing
• Immediately perceive redundant drawing
• Learn about offscreen windows

Plain Intensity Arrows Color Graph

Before 34.0 fps 2.1 fps 2.3 fps

After 19.9 fps 15.2 fps 6.9 fps

How Did We Do
With SimPhysics?

•Memory use: 2.5 MB before, 1.1 MB after
•Measured on 600MHz iBook with lots of memory

Other Tools to
Check Out Yourself
•Heap memory use

• heap, leaks , malloc_history

•Process state:
• sample: Command-line version of Sampler
• time: overall time for specific application

•Resources
• io_stat: disk, network performance (Jaguar only)
• sc_usage: which system calls are used?

Hints About Tool Use
•All tools work on any binary

• No need to instrument or recompile
•CFM binaries generated by CodeWarrior

• Use inline traceback tables for symbol info
• Set macro to use system’s malloc library

How to Learn More About Tools
•Part of Mac OS X Developer Tools CD
•Documentation for applications

• Graphical tools: documentation in application
• Command-line tools: man pages
• /Developer/Documentation/ReleaseNotes

•Inside Mac OS X books
• “Inside Mac OS X: Performance”
• “Inside Mac OS X: System Overview”

Conclusion
•Tune your application to make best impression
•Aim to reduce memory use… in all ways
•Compare performance between builds
•Watch Window Manager and other servers
•Create great applications for Mac OS X

Computer Hardware Understanding
Development Tools

 “CHUD” Tools

Eric Miller and Nathan Slingerland
Architecture Performance Group, Apple Computer

What Can You Do
With CHUD Tools?
•Find out what the hardware is doing
•Find critical code segments and tune that code
•Look at system-wide behavior

What Is the Hardware Doing?
•Macintosh hardware has built-in Performance
Monitor Counters (PMCs)

•Count “performance events”
• Instructions
• Cache misses
• Execution stalls

•Use CHUD tools to ask the
PMCs what is going on

CPU 1CPU 1

Memory

Controller

Memory

Controller

M

e

m

o

r

y

M

e

m

o

r

y
CPU 2CPU 2

PMCsPMCs

B

U

S

B

U

S

PMCsPMCs

PMCsPMCs

 MONster
•Configure Performance Monitor Counters
•Collect PMC data based on:

• Hotkey, timed intervals, or event counts
•Compute performance metrics from PMC data

• Memory bandwidth (bytes/sec)
• Cycles per instruction (CPI)
• Define your own metrics

•View results in tabular or chart form

MONster

MONster

MONster

shi·ka·ri (sh-kär, -kr) n. pl. shi·ka·ris, a big game
hunter; a professional hunter or guide Shikari

•Sample what is running on the system
• Use event counts or timed intervals
• System wide, process, or thread scope

•Relate performance events to your source code
• Performance “hot spots”
• Annotated disassembly

•Performance event histograms

Shikari Demo

CHUD.framework
•Write your own performance analysis tool

• Control Performance Monitor Counters
• Access Special Purpose Registers (SPRs)
• Collect information about system hardware

• CPU, Memory Controller, Bus

•Instrument your source code around
critical sections

CHUD.framework Example
#include <CHUD/chud.h>
…
chudInitialize();

printf(" CPU: PPC %d, %d MHz, Bus: %d
MHz\n",
 chudProcessorType(),chudProcessorMHz(),
 chudBusFreq()/1000000);

…
chudSetCounterEvent(chudCPU1Dev, PMC_1, 1);
chudSetCounterEvent(chudCPU1Dev, PMC_2, 2);

chudClearCounters();
chudStartCounters();

your_important_function();

chudStopCounters();
…

CHUDreport();

void CCHUDreport(void) {
/* get counter data */
pmcCounts=chudGetEventCounts(chudCPU1Dev,&ct);

/* output counter data */
 for (i=0; i<ct; i++) {
 ev = chudGetCounterEvent(chudCPU1Dev, i);
 evstr = chudGetEventString(i, ev);
 printf("\tPMC: %d\t\t%f\t%s\n",

i+1,pmcCounts[i],evstr)); }}

Setup and Gather Data Report Results

Other CHUD Tools
•Amber—instruction tracer

•Acid—filters traces for perf statistics

•SimG4—cycle accurate G4 (7400) simulator

•Reggie—examine and modify SPRs

Where to Get CHUD Tools
•Available on the web:
http://developer.apple.com/tools/debuggers.html

(Then click on CHUD Tools to download)

•Report any issues to:
chud-tools-feedback@group.apple.com

For More Information
•“Mac OS X: System Overview”
“Mac OS X: Performance”
on disk:
/Developer/Documentation/Essentials/

orderable in print from the web:
http://developer.apple.com/techpubs/

•Apple Developer Connection tools page
http://developer.apple.com/tools/

•Bug Reporting
http://developer.apple.com/bugreporter/

Roadmap
Hall 2

Fri., 9:00am
Hall 2

Fri., 9:00am

906 Developing for Performance:
Understand system performance concepts

Room J
Fri., 10:30am

Room J
Fri., 10:30am

907 Compiler Developments at Apple:
See the tools to optimize your application

Hall 2
Fri., 5:00pm

Hall 2
Fri., 5:00pm

909 Debugging in Mac OS X:
Learn about gdb and debugging techniques

Room J1
Fri., 3:30pm
Room J1

Fri., 3:30pm

FF015 Development Tools:
Make your thoughts known

Who to Contact
Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

CHUD-Tools Engineering Feedback
chud-tools-feedback@group.apple.com

Development Tools Engineering Feedback
macosx-tools-feedback@group.apple.com

Q&A

Godfrey DiGiorgi
Technology Manager, Development Tools

ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

